Глава 1
Введение
Цель данной статьи - сформировать базовые знания о супергетеродинных анализаторах спектра и рассказать о недавних достижениях в развитии их возможностей.
В самых общих чертах анализатор спектра можно описать как частотно-избирательный вольтметр, реагирующий на амплитуду и настроенный так, чтобы отображать среднеквадратичное значение синусоидальной волны. Важно осознавать, что анализатор спектра не является измерителем мощности, несмотря на то, что он способен напрямую отображать значение мощности. Если нам известен какой-нибудь параметр синусоидальной волны (например, пиковое или среднее значение) и известно сопротивление, через которое мы измеряем это значение, мы можем настроить наш вольтметр на отображение мощности. С преимуществами цифровой технологии, современные анализаторы спектра обладают куда более широкими возможностями. В данной книге будут рассмотрены простейшие анализаторы спектра, а также множество дополнительных возможностей, предоставленных развитием цифровой технологии и цифровой обработки сигналов.
Частотная область против временной области
Прежде чем начать подробно рассматривать анализатор спектра, зададимся вопросом: «А что же такое вообще спектр, и зачем нам его измерять и анализировать?» Обычной и естественной системой отсчета для нас является время. Мы замечаем, когда происходит то или иное событие. Это включает и события электрического характера. Можно использовать осциллограф и наблюдать мгновенное значение величины какого-то электрического явления (или любого другого явления, переведенного в вольты посредством надлежащего преобразователя) в зависимости от времени. Иными словами, мы используем осциллограмму для наблюдения формы сигнала во временной области.
Теория Фурье1 гласит, что любое электрическое явление во временной области состоит из одной или нескольких синусоидальных волн с соответствующими частотами, амплитудами и фазами. То есть можно преобразовать сигнал во временной области в его эквивалент в частотной области. Измерения в частотной области способны показать, сколько энергии имеется на каждой конкретной частоте. При надлежащей фильтрации такой сигнал, как на Рис. 1-1, может быть разложен на отдельные синусоидальные волны, или спектральные составляющие, которые затем можно оценить независимо друг от друга. Каждая такая волна описывается амплитудой и фазой. Если сигнал, который мы хотим исследовать, - периодический (как в нашем случае), то по теории Фурье составляющие его синусоидальные волны будут разнесены в частотной области на 1/Т, где Т – это период сигнала2.
Рисунок 1-1. Сложный сигнал во временной области
Некоторые измерения требуют получения полной информации о сигнале – частоты, амплитуды и фазы. Такого рода анализ называется векторным анализом сигнала и рассматривается в документе Agilent Application Note 150-15, Vector Signal Analysis Basics. Современные анализаторы спектра способны проводить различного рода векторные измерения сигнала. Однако, другая обширная группа измерений не включает определения фазовых соотношений между синусоидальными составляющими. Такой тип анализа сигнала называется спектральным анализом. Поскольку спектральный анализ более прост для понимания и одновременно необычайно полезен на практике, мы сперва рассмотрим то, как анализаторы спектра осуществляют измерения для спектрального анализа, начиная с Главы 2.
Теоретически, чтобы осуществить преобразование из временной области в частотную область, сигнал должен быть оценен на всем промежутке времени, то есть до ± бесконечности. Однако, на практике мы всегда ограничиваемся каким-то конечным периодом, когда проводим измерение. Преобразование Фурье также может быть осуществлено и из частотной области во временную. В этом случае, опять же, теоретически нам надо знать все спектральные составляющие в диапазоне частот до ± бесконечности. На самом же деле, производя измерения только в той области частот, в которой содержится наибольшая часть энергии сигнала, можно получить вполне приемлемые результаты. При преобразовании Фурье из частотной области очень важно знать фазу индивидуальных составляющих. Например, прямоугольный периодический сигнал, переведенный в частотную область и обратно, может превратиться в пилообразный, если не были зафиксированы фазы.
Что такое спектр?
Так чем же является спектр в контексте нашего обсуждения? Спектр – это набор синусоидальных волн, которые, будучи надлежащим образом скомбинированы, дают изучаемый нами сигнал во временной области. На Рис. 1-1 показана волновая форма сложного сигнала. Давайте предположим, что мы ожидали увидеть чисто синусоидальный сигнал. И хотя форма явно демонстрирует нам, что сигнал не является чистой синусоидой, она не дает определенного ответа на вопрос о причинах данного явления. На Рис. 1-2 показан наш сложный сигнал во временной и в частотной области. В частотной области показана амплитуда для каждой синусоидальной волны в спектре в зависимости от частоты. Как видно, в данном случае спектр состоит лишь из двух волн. Теперь мы знаем, отчего наш сигнал не является чистой синусоидой: в нем содержится еще одна волна, вторая гармоника в нашем случае. Означает ли это, что измерения во временной области можно вообще не проводить? Отнюдь. Временная область является предпочтительной для многих измерений, а для некоторых является единственно возможной. К примеру, только во временной области можно измерить длительность фронта и спада импульса, выбросы и биения.
Рисунок 1-2. Связь между временной и частотной областью
Для чего измерять спектр?
У частотной области есть свои плюсы в плане измерений. Мы уже видели на Рис. 1-1 и 1-2, что частотная область гораздо удобнее для определения гармонического состава сигнала. Те, кто занимаются беспроводной связью, очень заинтересованы в определении внеполосного и паразитного излучения. Например, сотовые радиосистемы должны проверяться на наличие гармоник несущего сигнала, которые могут вносить помехи в работу других систем, оперирующих на той же частоте, что и гармоники. Инженеры и техники также часто обеспокоены искажением сообщений, транслирующихся с модуляцией несущего сигнала. Интермодуляция третьего порядка (то есть две составляющие сложного сигнала, модулирующие друг друга) может причинить много хлопот, поскольку компоненты искажения могут попасть в интересуемую полосу частот и не будут надлежащим образом отфильтрованы.
Наблюдение за спектром – еще одна важная сторона измерений в частотной области. Государственные регулирующие структуры распределяют различные частоты для различных радио-служб: телевизионное и радиовещание, сотовая связь, связь правоохранительных органов и спасательных служб, а также множество иных организаций и приложений. Крайне важно, чтобы каждая служба работала только на предназначенной для нее частоте и оставалась в пределах выделенной полосы канала. Передатчики и другие излучатели зачастую могут работать на очень близко расположенных соседних частотах. Для усилителей мощности и других компонентов таких систем ключевым параметром для измерения является количество энергии сигнала, просачивающейся в соседние каналы и порождающей интерференцию.
Электромагнитная интерференция (EMI) – это термин, применяемый к нежелательному излучению от преднамеренных и случайных излучателей. Поводом для беспокойства тут служит тот факт, что это нежелательное излучение, будучи передано в эфир или по проводам, может затруднить работу других систем. При разработке и производстве практически любой электрической или электронной продукции необходимо исследовать уровни излучения в зависимости от частоты, и приводить их в соответствие с нормами, устанавливаемыми правительственными органами или индустриальными стандартами. На Рис. с 1-3 по 1-6 показаны некоторые из такого рода измерений.
Рисунок 1-3. Тест передатчика на гармонические искажения
Рисунок 1-4. Радиосигнал GSM и спектральная маска, показывающая границу нежелательных выбросов
Рисунок 1-5. Двухтоновый тест радиочастотного усилителя мощности
Рисунок 1-6. Выбросы излучения и их ограничения по стандарту CISPR11 как часть теста на электромагнитную совместимость
Типы измерений
Чаще всего анализаторами спектра измеряют частоту, мощность, модуляцию, искажения и шум. Знание спектрального состава сигнала очень важно, особенно в системах с полосой частот ограниченной ширины. Переданная мощность также является важным измеряемым параметром. Слишком малая мощность означает, что сигнал не сможет достичь точки назначения. Слишком большая мощность может быстро истощить заряд батарей, создать искажения и чрезмерно повысить рабочую температуру системы.
Измерение качества модуляции может быть важным для того, чтобы обеспечить нормальную работу системы и быть уверенным в том, что информация передается корректно. Измерения коэффициента модуляции, уровня полосы боковых частот, качества модуляции и заполнения полосы частот – это примеры самых распространенных тестов при аналоговой модуляции. В случае цифровой модуляции измеряются модуль вектора погрешности, дисбаланс IQ, зависимость погрешности фазы от времени и ряд других параметров. Более подробно об этих видах измерений рассказано в документе Agilent Application Note 150-15, Vector Signal Analysis Basics.
В сфере коммуникаций и связи измерение искажений очень важно как для приемников, так и для передатчиков. Излишние гармонические искажения на выходе передатчика могут создавать помехи на других коммуникационных частотах. В блоках предусилителей приемника не должно быть интермодуляции, чтобы избежать перекрестного наложения сигнала. Хороший пример – интермодуляция несущих сигналов кабельного телевидения, которые при распространении по распределительной системе вносят искажения в другие каналы этого же кабеля. Распространенными измерениями искажений являются измерения интермодуляции, гармоник и паразитного излучения.
Часто бывает нужно измерить и шум как сигнал. Любая активная цепь или устройство будет генерировать шум. Измерения коэффициента шума и отношения сигнал/шум (С/Ш) являются важными для описания показателей устройства и его вклада в общие показатели системы.
Виды анализаторов сигнала
Хотя в этом руководстве мы концентрируемся на перестраиваемом супергетеродинном анализаторе спектра, существуют и другие архитектуры. Важный не супергетеродинный тип анализатора – тот, что оцифровывает сигнал во временной области, использует методы цифровой обработки сигнала, выполняет быстрое преобразование Фурье (БПФ) и показывает сигнал в частотной области. Одно преимущество подхода с БПФ в том, что появляется возможность характеризовать одновспышечные явления. Другое – в том, что кроме амплитуды можно измерить и фазу. Однако, БПФ-машины имеют некоторые ограничения в сравнении с супергетеродинными анализаторами спектра, в частности - по частотному диапазону, чувствительности и динамическому диапазону.
Векторные анализаторы сигнала тоже оцифровывают сигнал во временной области, как и БПФ-машины, но их возможности при этом распространяются и на область СВЧ при помощи понижающих преобразователей, включенных перед АЦП. Такие анализаторы позволяют провести быстрые измерения спектра с хорошим разрешением, демодуляцию и расширенный анализ во временной области. Они особенно полезны для описания сложных сигналов – всплесков, переходного или модулированного сигнала в системах связи, телевещания, радиовещания, в сонарах, а также в приложениях ультразвукового зондирования.
1 Жан Батист Фурье, 1768 – 1830, французский математик и физик, открывший, что периодические функции могут быть представлены последовательностью синусов и косинусов.
2 Если же сигнал появляется лишь раз, то его спектральным представлением будет непрерывное множество синусоидальных волн.
Страница: 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|